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SUMMARY

We prove in Theorem 1 a new relationship between the stress, pressure, velocity, and mean curvature for
embedded surfaces in incompressible viscous flows. This is then used to define a corresponding modified
pressure boundary condition for flow of Newtonian and generalized Newtonian fluids. These results agree
with an intuitive notion of the flow physics but apparently have not previously been shown rigorously. We
describe some of the implementation issues for inflow and outflow boundaries in this context and give
details for a penalty treatment of the associated tangential velocity constraint. This is then implemented
and applied in high-resolution 3D benchmark calculations for a representative generalized viscosity model.
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1. INTRODUCTION

The numerical simulation of Newtonian and generalized Newtonian flows poses a number of
challenges. Of particular interest here is the choice of appropriate inflow and outflow boundary
conditions. In certain pipe and channel-flow problems involving Newtonian fluids an analytic, fully-
developed profile can be determined. Such profiles may then be applicable as remote boundary
conditions in numerical simulations. However, analytic solutions are usually not available for
generalized Newtonian fluids especially in more complex geometries. Hence, the specification of
a known fully developed velocity profile is generally not an option.
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1314 W. L. BARTH AND G. F. CAREY

Special boundary conditions can also be devised for remote far field or exterior flows to
approximate remote boundary conditions (e.g. see [1–5]). Of course, traction boundary condi-
tions may be applicable, and there have been several studies in the literature on such forms of
outflow boundary conditions. For example, it is common to impose a zero-normal-stress condition
at the outflow of the domain when the velocity is not known [6, 7].

To motivate our study here with generalized Newtonian flows, we find it instructive to consider
first what conditions might be easily determined or imposed in a laboratory experiment. For
instance, a pump, pressurized vessel, or fluid column could be used to bring fluid at a known
pressure to the entrance of a pipe or channel test section under investigation (as in wind and water
tunnels). The static entry pressure could be measured by a single experiment and the velocity
profile could be determined there by detailed local measurement. At the outflow, provided laminar
flow conditions persist, one might make similar pressure or velocity measurements. Also, if the
geometry of the domain is simple, then one may be able to apply a semi-analytic approach to
construct an approximate velocity profile. The momentum equations may be reduced and integrated
once to yield a 1D ordinary differential equation (ODE) that can be numerically integrated [8].

For those real-world problems that are fundamentally pressure driven and involve more com-
plex geometries, it is desirable then to impose a pressure drop by means of specified pressures
at the inflow and outflow boundaries. However, this is not mathematically justifiable for many
common finite element formulations for the incompressible Navier–Stokes equations including
mixed-Galerkin and pressure-projection methods as it leads to ill-posed problems and stability
concerns [6, 9]. Consequently, our goal here is to examine the role of the pressure more rigorously
in this context for Newtonian and generalized Newtonian fluids.

We begin with a brief statement of the governing equations and constitutive relations of interest
and in Theorem 1, construct a relation between stress, pressure, velocity, and mean curvature of
embedded surfaces. This relation may then be applied to prescribe appropriate pressure inflow
or outflow boundary conditions. Computationally, it is convenient to implement the boundary
condition using a penalty variational approach. This formulation is described, interpreted, and
implemented in a finite element scheme for generalized Newtonian flow simulation. Numerical
benchmark examples with a Powell–Eyring viscosity model are conducted for several pipe-flow
geometries.

2. PRESSURE RELATION

We consider here the standard primitive-variables statement of the continuity and momentum
equations describing incompressible, viscous flow of a generalized Newtonian fluid

�
�u
�t

+ u · ∇u= ∇ · r, (x, t) ∈ � × [0, tf] (1)

∇ · u= 0 (2)

where � is the spatial domain, tf is the final time of interest, u is the unknown velocity vector, �
is the density, and r is the stress tensor. The constitutive equation for the fluid stress is given by

r= −pI + 2�D(u) (3)
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where I is the identity tensor, � is the (not necessarily constant) viscosity, and D(u) is the strain
rate tensor given by

D(u) = 1
2 (∇u + (∇u)T) (4)

For any velocity-normal surface (�p ⊂ ��) let us define the normal component of the surface
traction force to be

(r(x, t) · n̂) · n̂= �p(x, t), (x, t) ∈ �p × [0, tf] (5)

where n̂ is the outward unit normal to �p.

Theorem 1
For any velocity-normal surface (�p ⊂ ��) in an incompressible viscous fluid, the normal
component of the normal traction is given by

�p(x, t) =−(p + 2�(u)|u|�) (6)

where � is the mean curvature of �p. Furthermore, in the case where �p is a planar surface, this
reduces to the pressure condition

p(x, t) =−�p(x, t), (x, t) ∈ �p × [0, tf] (7)

Proof
Combining Equations (3) and (4), the constitutive relation becomes

r=−Ip + �(u)(∇u + (∇u)T) (8)

Now, given any unit vector field, m̂, the following identities hold:

(r · m̂) · m̂= {[−pI + �(u)(∇u + (∇u)T)] · m̂} · m̂
= −(pIm̂) · m̂+ {[�(u)(∇u + (∇u)T)] · m̂} · m̂ (9)

= −pm̂ · m̂+ (2�(u)(∇u) · m̂) · m̂ since ((∇u) · m̂) · m̂= ((∇u)T · m̂) · m̂
= −p + (2�(u)(∇u) · m̂) · m̂ since |m̂| = 1 (10)

For the velocity field, u= (u1, u2, u3) and co-ordinates x= (x1, x2, x3), streamlines may be defined
by integrating the following equations:

dx1
u1

= dx2
u2

= dx3
u3

(11)

Next, let us take m̂ to be the unit tangent vector field to these streamlines, then the velocity can
may be expressed as

u= |u|m̂ (12)
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Substituting Equation (12) for u in terms of m̂ into the reduced part of the viscous term and
simplifying

(r · m̂) · m̂= −p + 2�(u)(∇(|u|m̂) · m̂) · m̂
= −p + 2�(u){(∇|u|) · m̂(m̂ · m̂) + |u|[(∇m̂) · m̂] · m̂}
= −p + 2�(u){(∇|u|) · m̂+ |u|[(∇m̂) · m̂] · m̂}

Since

((∇m̂) · m̂) · m̂= 1
2 (∇|m̂|2) · m̂+ (m̂× (∇× m̂)) · m̂

= ∇1 · m̂+ (m̂× (∇× m̂)) · m̂
= 0

it follows that

(r · m̂) · m̂=−p + 2�(u)(∇|u|) · m̂ (13)

Next, substituting Equation (12) into the continuity equation, (2), gives

0=∇ · u=∇ · (|u|m̂) = (∇|u|) · m̂+ |u|∇ · m̂ (14)

Using this, (13) becomes

(r · m̂) · m̂=−(p + 2�(u)|u|∇ · m̂) (15)

Finally, restricting to �p, taking m̂ as n̂, the outward unit normal to �p, and recalling that � =
(∇ · m̂)|�p

is the mean curvature of �p, implies

(r|�p
n̂) · n̂=−(p + 2�(u)|u|�) (16)

�

This then is the main result linking stress, pressure, velocity, and mean curvature on any velocity-
normal embedded surface. In the special case where velocity-normal surface �p is planar, then
� = 0, and we obtain a simplified result involving only the pressure. This is the case in the planar
outflow boundary considered in subsequent numerical experiments. (Note: if �p is an inflow
boundary, then the curvature term would appear with a negative sign above.)

A few items from the above analysis merit further comment. First, Equation (10) above is a
general statement applicable anywhere in the flow for any unit vector field giving an identity
between the normal component of the normal traction, the pressure, and the velocity gradient.
Second, Equation (15) is similarly valid anywhere in the flow, but it applies only to those vectors
tangent to the streamlines. Finally, Equation (16) is applicable on any embedded surface in the flow
field (interior or on the inflow/outflow boundaries) to which the velocity is an outward normal.
This final equation relates the normal component of the normal traction, the pressure, the velocity
magnitude, and the surface mean curvature. If the associated surface is planar and an inflow or
outflow boundary then we have the simplified (planar) pressure boundary condition in Equation (7).
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We now summarize the initial and boundary conditions completing the statement of the flow
problem. For convenience we assume an initially quiescent flow (though the proposed technique
does not require this condition as long as the initial condition is divergence-free)

u(x, 0) = 0, x∈ � (17)

On the solid walls of the domain � we specify the usual no-slip and no-penetration conditions

u= 0, (x, t) ∈ �D × [0, tf] (18)

where �D ⊂ ��.
At the inflow and outflow boundaries (�p ⊂ ��) we set

(r(x, t) · n̂) · n̂= �p(x, t), (x, t) ∈ �p × [0, tf] (19)

u · ŝ1 = 0 (20)

u · ŝ2 = 0 (21)

where n̂ is the outward unit normal, �p(x, t) is the pressure expression and ŝ1 and ŝ2 are unit
tangent vectors to �p. The first condition specifies the normal component of the surface traction
force, and the latter two imply there is no tangential flow at these boundaries; that is, flow is normal
to the inflow and outflow boundaries. This corresponds exactly to the conditions of Theorem 1 and,
therefore, acts as a pressure boundary condition. As an example, in the pipe flow cases computed
later, if the surface �p is perpendicular to the pipe walls, then Equations (20) and (21) correspond
to requiring that the flow be parallel to the pipe walls at this boundary, otherwise they simply
require the flow to be normal to �p.

3. PENALTY VARIATIONAL FORMULATION

A penalty formulation for a Galerkin finite element scheme is used in subsequent numerical
experiments concerning the boundary conditions discussed above. The associated weak formulation
of the governing equations is derived by multiplying Equations (1) and (2) by appropriate test
functions, integrating over the domain �, applying integration by parts to the viscous stress term
and introducing the constitutive relations to obtain:

Find (u, p) ∈V× Q satisfying the essential boundary conditions, (19), and such that∫
�

�

(
�u
�t

+ u · ∇u
)

· v dx

=
∫

�
p(∇ · v) − 2�D(u) : ∇v dx +

∫
�p

(r · n̂) · v ds (22)

−
∫

�
q(∇ · u) dx = 0 (23)

for all admissible test functions (v, q)∈V× Q.
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1318 W. L. BARTH AND G. F. CAREY

Note that we have retained the normal traction in the boundary term arising from integration by
parts in the basic formulation.

The normal-traction boundary condition is applied by rewriting the boundary integral in Equation
(22) as ∫

�p

(r · n̂) · v ds =
∫

�p

(r · n̂) · (vn̂n̂ + vŝ1 ŝ1 + vŝ2 ŝ2) ds (24)

and substituting Equations (19) and (24) into Equation (22) with vs1= vs2 = 0, since the tangential
velocity components are zero on �p, to get∫

�
�

(
�u
�t

+ u · ∇u
)

· v dx =
∫

�
p(∇ · v) − 2�D(u) : ∇v dx +

∫
�p

�pvn̂ ds (25)

The conditions of no flow tangential to �p (Equations (20) and (21)) or, equivalently, the
condition that the flow be entirely normal to it, may be easily implemented as essential boundary
conditions directly in the resulting finite element matrix problem when the surface tangents are
axis aligned. (e.g. u· ŝ1 = 0 would be equivalent to u1 = 0 when ŝ1 is aligned with the x1-direction).
However, boundary penalty methods are often introduced in finite element software to simplify
the treatment of essential conditions in more general situations. In the boundary penalty integral,
the tangents or normals are evaluated at the Gauss integration points interior to element boundary
edges or faces. This avoids ambiguities due to edge vertex discontinuities in normal and tangential
vector directions. It also simplifies the software implementation by using the same integration
facilities already employed for constructing the underlying finite element system.

The tangential velocity vector can be determined by subtracting the resolved velocity vector
in the normal direction. That is, for the tangential part of the velocity vector we then have:
[u − (u · n̂)n̂]. In the present work, the condition that the components of the velocity tangent
to �p are zero is enforced using a penalty method by adding the first variation of the following
least-squares penalty functional to Equation (25):

I (u) = 1

2�

∫
�p

[u − (u · n̂)n̂] · [u − (u · n̂)n̂] ds (26)

where 0<�� 1 is the penalty parameter. Taking the first variation, the contribution from the penalty
functional is

I ′(u)(v) = 1

�

∫
�p

[u − (u · n̂)n̂] · [v − (v · n̂)n̂] ds

= 1

�

∫
�p

{u · v − [(u · n̂)n̂] · v − u · [(v · n̂)n̂] + [(u · n̂)n̂] · [(v · n̂)n̂]} ds

= 1

�

∫
�p

u · v + (u · n̂)(v · n̂) − 2(u · n̂)(v · n̂) ds

= 1

�

∫
�p

u · v − (u · n̂)(v · n̂) ds (27)
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Adding this penalty contribution to the previous variational functional statement, we have the
penalized problem:

Find (u, p) ∈V× Q satisfying the essential boundary conditions, Equation (19), and such that∫
�

�

(
�u
�t

+ u · ∇u
)

· v dx =
∫

�
p(∇ · v) − 2�D(u) : ∇v dx

+
∫

�p

�pvn̂ ds + 1

�

∫
�p

u · v − (u · n̂)(v · n̂) ds (28)

−
∫

�
q(∇ · u) dx = 0 (29)

for all admissible test functions (v, q)∈V× Q.
Alternatively, one can view the addition of the penalty as a mixed boundary condition involving

the tangential components of the velocity and the tangential components of the normal traction.
The normal traction is given by

r · n̂=−pn̂ + �(u)(∇u + (∇u)T) · n̂
Expanding the velocity gradient terms in surface co-ordinates and simplifying gives

r · n̂= −pn̂ + �(u)

[
2
�un̂
�n̂

+
(

�u ŝ1
�n̂

+ �un̂
�ŝ1

)
ŝ1 +

(
�u ŝ2
�n̂

+ �un̂
�ŝ2

)
ŝ2

]
(30)

(Note that this expansion assumes a Cartesian normal-tangential co-ordinate system, and that
additional terms from the Christoffel symbols would appear in curvilinear co-ordinates.)

As was done in Equation (24), the normal component of the normal traction in Equation (30) is
prescribed as �p in the boundary conditions. However, now we can see that setting the tangential
components of the test functions to zero in Equation (24) and then adding the penalty for the
tangential components of the velocity is equivalent to setting

1

�
u1 =−�(u)

(
�u ŝ1
�n̂

+ �un̂
�ŝ1

)
(31)

1

�
u2 =−�(u)

(
�u ŝ2
�n̂

+ �un̂
�ŝ2

)
(32)

That is, the penalty term plus the remaining part of the viscous stress form a natural, mixed
boundary condition as one might anticipate. Multiplying these relations throughout by � makes it
clear that the tangential velocities will be O(�‖D(u)‖).

In the examples that follow, Equations (28) and (29) are discretized using the familiar
consistent C0 piecewise quadratic velocities and piecewise linear pressure base pair. The resulting
semidiscrete ODE system is integrated in time using a second-order Adams–Bashforth/trapezoidal
rule predictor–corrector method, and the resulting nonlinear system in each timestep is iteratively
solved to a specified tolerance using Newton’s method [10–13].
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Figure 1. Powell–Eyring model: (a) viscosity; and (b) shear stress.

4. VISCOSITY MODEL

As a representative test fluid, we consider the Powell–Eyring apparent viscosity model. This model
is based on Eyring reaction-rate theory giving it a strong thermodynamic underpinning [14–17].
The theory treats viscous diffusion as a ‘rate process’ described by a sum of exponential decay
terms at the molecular level leading to an expansion of the viscosity in terms of inverse hyperbolic
sine functions of the strain rate. Keeping the first two terms in such an expansion leads to the
3-parameter Powell–Eyring model:

�(s)= �∞ + (�0 − �∞)
sinh−1 (�s)

�s
(33)

where, for strain rate s, �0 is the limiting viscosity at zero strain rate, �∞ is the limiting viscosity
as s → ∞, and � is a characteristic time. The strain rate is given by

s(u) = √
2D(u) : D(u) (34)

Dimensionless viscosity, �(s)/�0, and shear stress magnitude, s�(s)/s0�0, are plotted in Figures
1(a) and (b) versus strain rate, s/s0 for � = 100 and five linearly spaced values of �∞/�0 in [0, 1].
Note that the Newtonian fluid is the special case where �0 = �∞.

5. EXAMPLE SIMULATIONS

Now that a viable pressure boundary condition has been established, some example situations for
pressure-driven flow in cylindrical pipes are simulated to test the formulation. As a first verification
test, velocity profiles are computed from time-dependent solutions to steady state of pressure-driven
flow in a straight, cylindrical pipe with a circular cross-section, L/D = 5, for Reynolds numbers
of 1, 10, and 100, and viscosity ratios of 1, 0.1, and 0.01. Since there is no velocity scale in
the problem statement, we take �U 2 =�� in the traditional definition of the Reynolds number to

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1313–1325
DOI: 10.1002/fld



A PRESSURE BOUNDARY CONDITION 1321

arrive at a ‘pressure’ Reynolds number given by

Re= �UD

�0

= D
√

���

�0
(35)

where D is the pipe diameter and ��= |�in − �out|, where �in and �out are the specified normal
components of the normal traction at the inflow and outflow boundaries, respectively. This choice
leads to a non-dimensional form of the viscosity model given by

�(s) = �∞
�0

+
(
1 − �∞

�0

)
sinh−1 (�∗s)

�∗s
(36)

�∗ =
�

√
��

�

D
(37)

This non-dimensionalization leads to a scheme which is valid for both Newtonian and non-
Newtonian cases is valid for all values of the infinite-strain-rate viscosity, �∞. However,
Equation (36) shows that the non-dimensional viscosity model’s characteristic time depends on
the real pressure-drop, and so care should be taken when analysing results where the Reynolds
number and viscosity ratio are varied and the characteristic time held fixed.

5.1. Straight pipes

Figure 2 shows a representative all-hexahedral mesh for the straight pipe geometry described
above, along with a schematic of the boundary conditions. The standard conditions of no-slip with

No Slip

Normal Traction = 0

Figure 2. Cylindrical mesh and boundary conditions.
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Figure 3. Velocity vectors and pressure contours, Re= 10, �∞/�0 = 0.1.
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Figure 4. Velocity profiles for Powell–Eyring flow in a cylindrical pipe:
(a) Re= 1; (b) Re= 10; and (c) Re= 100.
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no penetration apply at the wall of the cylinder. The inflow and outflow boundary velocity vectors
are constrained to be normal to these surfaces in this test (zero tangential velocity components).
At the inflow boundary the normal component of the normal traction �in = (r · n̂) · n̂= −1 and at
the outflow �out = 0 corresponding to a unit non-dimensional pressure drop.

In the following numerical results, the mesh consists of 3240 elements generated by CUBIT
[18] partitioned by dividing the domain into eight equal pieces along the length of the cylinder for
computation on eight processors. The underlying linear subsystems for the Newton scheme were
solved with ILU(0) preconditioned BCGStab to a relative tolerance of 10−16 with a maximum of
2000 iterations at each nonlinear step (not required in any of these cases).

Pressure contours and velocity vectors on a mid-pipe cross-section for flow at Re= 10 and
�∞/�0 = 0.1 are plotted in Figure 3. This demonstrates that the pressure boundary condition is
correctly enforced and that the flow is normal to both the inflow and outflow surfaces. Figures
4(a)–(c) show velocity profiles on a longitudinal mid-pipe cross-section halfway downstream from
the inflow boundary. As the flow is fully developed and steady, these profiles are identical at all
cross-sections in the streamwise direction. Due to the choice of �0 as the scaling parameter in
the non-dimensionalization, we find that the maximum magnitude of the velocity grows as the
viscosity ratio shrinks. However, since we are interested in comparing the shapes of the velocity
profiles, we may simply scale these profiles by their respective maximum values to facilitate our
comparison as is done in these figures.

These figures illustrate the expected ‘plug-flow’ behaviour usually associated with shear-thinning
fluids as well as the parabolic profile expected in the Newtonian case. At Re= 1 the plug-flow
profile for the non-Newtonian cases is less blunt and more rounded than those found at higher
Reynolds numbers. As is well known, there is no dependence on the Reynolds number for the
resulting velocity profile in laminar, fully developed, Newtonian Poiseuille flows. However, for the
non-Newtonian case and the non-dimensionalization used in this work, there is an apparent effect
of increasing Reynolds number due to the variation of the viscosity. An analysis confirms that, in
this scaling, fixing �∗ and varying Re does not correspond to a fixed fluid. To avoid this problem,
future numerical experiments might be done with

�∗ = �0�

D2�
Re (38)

Figure 5. 30◦ bend, Re= 10, �∞/�0 = 1: (a) pressure contours; and (b) velocity
vectors and shear stress contours.
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1324 W. L. BARTH AND G. F. CAREY

that is, one could introduce a new non-dimensional parameter �0�/D2� which embodies all the
material properties. Keeping this fixed as Re varies would result in a non-dimensionalization
scheme where the fluid was fixed as the parameters were varied.

5.2. Bent pipes

In order to demonstrate the action of the penalty term in the boundary conditions and to give an
example where convective effects are important, we also considered pipes with 30, 90, and 120◦
circular bends. Plotted in Figures 5–7 are pressure contours, section velocity vectors, and contours

Figure 6. 90◦ bend, Re= 40, �∞/�0 = 0.1: (a) pressure contours; and (b) velocity
vectors and shear stress contours.

Figure 7. 120◦ bend, Re= 200, �∞/�0 = 1: (a) pressure contours; and (b) velocity
vectors and shear stress contours.
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of the magnitude of the shear stress for the 30, 90, and 120◦ cases, respectively. These figures
show clearly that the pressure is constant on the inflow and outflow surfaces, and that the velocity
is indeed normal to the inflow and outflow surfaces as expected.

6. CONCLUSIONS

We have established a relationship between the stress, pressure, velocity, and mean curvature
on embedded surfaces in incompressible flows where the velocity is normal to the surface. The
application of this relation on the inflow or outflow boundary leads to an associated boundary
condition. A penalty variational implementation is constructed and interpreted and then used in a
finite element scheme. In supporting numerical verification studies for Poiseuille flow in straight
3D pipes, we recover the expected fully developed velocity profiles for Newtonian and generalized
Newtonian Powell–Eyring fluids. (The latter are representative of a class of apparent viscosity
models.) Other numerical studies on flow in bent pipes illustrate the behaviour of the boundary
condition and its penalty implementation. Our intent is to use this boundary condition in future
studies of blood flow in arterial branches and other flow simulations.
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